RF24 v1
|
This is an example of how to use the RF24 class to create a battery- efficient system. It is just like the pingpair.pde example, but the ping node powers down the radio and sleeps the MCU after every ping/pong cycle.
/* Copyright (C) 2011 J. Coliz <maniacbug@ymail.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. */ #include <SPI.h> #include <avr/sleep.h> #include <avr/power.h> #include "nRF24L01.h" #include "RF24.h" #include "printf.h" // // Hardware configuration // // Set up nRF24L01 radio on SPI bus plus pins 9 & 10 RF24 radio(9,10); // sets the role of this unit in hardware. Connect to GND to be the 'pong' receiver // Leave open to be the 'ping' transmitter const int role_pin = 7; // // Topology // // Radio pipe addresses for the 2 nodes to communicate. const uint64_t pipes[2] = { 0xF0F0F0F0E1LL, 0xF0F0F0F0D2LL }; // // Role management // // Set up role. This sketch uses the same software for all the nodes // in this system. Doing so greatly simplifies testing. The hardware itself specifies // which node it is. // // This is done through the role_pin // // The various roles supported by this sketch typedef enum { role_ping_out = 1, role_pong_back } role_e; // The debug-friendly names of those roles const char* role_friendly_name[] = { "invalid", "Ping out", "Pong back"}; // The role of the current running sketch role_e role; // // Sleep declarations // typedef enum { wdt_16ms = 0, wdt_32ms, wdt_64ms, wdt_128ms, wdt_250ms, wdt_500ms, wdt_1s, wdt_2s, wdt_4s, wdt_8s } wdt_prescalar_e; void setup_watchdog(uint8_t prescalar); void do_sleep(void); const short sleep_cycles_per_transmission = 4; volatile short sleep_cycles_remaining = sleep_cycles_per_transmission; // // Normal operation // void setup(void) { // // Role // // set up the role pin pinMode(role_pin, INPUT); digitalWrite(role_pin,HIGH); delay(20); // Just to get a solid reading on the role pin // read the address pin, establish our role if ( digitalRead(role_pin) ) role = role_ping_out; else role = role_pong_back; // // Print preamble // Serial.begin(57600); printf_begin(); printf("\n\rRF24/examples/pingpair_sleepy/\n\r"); printf("ROLE: %s\n\r",role_friendly_name[role]); // // Prepare sleep parameters // // Only the ping out role sleeps. Wake up every 4s to send a ping if ( role == role_ping_out ) setup_watchdog(wdt_1s); // // Setup and configure rf radio // radio.begin(); // // Open pipes to other nodes for communication // // This simple sketch opens two pipes for these two nodes to communicate // back and forth. // Open 'our' pipe for writing // Open the 'other' pipe for reading, in position #1 (we can have up to 5 pipes open for reading) if ( role == role_ping_out ) { radio.openWritingPipe(pipes[0]); radio.openReadingPipe(1,pipes[1]); } else { radio.openWritingPipe(pipes[1]); radio.openReadingPipe(1,pipes[0]); } // // Start listening // radio.startListening(); // // Dump the configuration of the rf unit for debugging // radio.printDetails(); } void loop(void) { // // Ping out role. Repeatedly send the current time // if (role == role_ping_out) { // First, stop listening so we can talk. radio.stopListening(); // Take the time, and send it. This will block until complete unsigned long time = millis(); printf("Now sending %lu...",time); radio.write( &time, sizeof(unsigned long) ); // Now, continue listening radio.startListening(); // Wait here until we get a response, or timeout (250ms) unsigned long started_waiting_at = millis(); bool timeout = false; while ( ! radio.available() && ! timeout ) if (millis() - started_waiting_at > 250 ) timeout = true; // Describe the results if ( timeout ) { printf("Failed, response timed out.\n\r"); } else { // Grab the response, compare, and send to debugging spew unsigned long got_time; radio.read( &got_time, sizeof(unsigned long) ); // Spew it printf("Got response %lu, round-trip delay: %lu\n\r",got_time,millis()-got_time); } // // Shut down the system // // Experiment with some delay here to see if it has an effect delay(500); // Power down the radio. Note that the radio will get powered back up // on the next write() call. radio.powerDown(); // Sleep the MCU. The watchdog timer will awaken in a short while, and // continue execution here. while( sleep_cycles_remaining ) do_sleep(); sleep_cycles_remaining = sleep_cycles_per_transmission; } // // Pong back role. Receive each packet, dump it out, and send it back // // This is untouched from the pingpair example. // if ( role == role_pong_back ) { // if there is data ready if ( radio.available() ) { // Dump the payloads until we've gotten everything unsigned long got_time; bool done = false; while (!done) { // Fetch the payload, and see if this was the last one. done = radio.read( &got_time, sizeof(unsigned long) ); // Spew it. Include our time, because the ping_out millis counter is unreliable // due to it sleeping printf("Got payload %lu @ %lu...",got_time,millis()); } // First, stop listening so we can talk radio.stopListening(); // Send the final one back. radio.write( &got_time, sizeof(unsigned long) ); printf("Sent response.\n\r"); // Now, resume listening so we catch the next packets. radio.startListening(); } } } // // Sleep helpers // // 0=16ms, 1=32ms,2=64ms,3=125ms,4=250ms,5=500ms // 6=1 sec,7=2 sec, 8=4 sec, 9= 8sec void setup_watchdog(uint8_t prescalar) { prescalar = min(9,prescalar); uint8_t wdtcsr = prescalar & 7; if ( prescalar & 8 ) wdtcsr |= _BV(WDP3); MCUSR &= ~_BV(WDRF); WDTCSR = _BV(WDCE) | _BV(WDE); WDTCSR = _BV(WDCE) | wdtcsr | _BV(WDIE); } ISR(WDT_vect) { --sleep_cycles_remaining; } void do_sleep(void) { set_sleep_mode(SLEEP_MODE_PWR_DOWN); // sleep mode is set here sleep_enable(); sleep_mode(); // System sleeps here sleep_disable(); // System continues execution here when watchdog timed out } // vim:ai:cin:sts=2 sw=2 ft=cpp